
1

 Unit-4

 Planning a Software Project

SOFTWARE PROJECT ESTIMATION

 Software project estimation is a form of problem solving, and in most cases, the problem to be

solved (i.e., developing a cost and effort estimate for a software project) is too complex to be

considered in one piece.

 Estimation of resources, cost, and schedule for a software engineering effort requires experience,

access to good historical information (metrics), and the courage to commit to quantitative

predictions when qualitative information is all that exists.

 Software project estimation is a form of problem solving, and in most cases, the problem to be

solved is too complex to be considered in one piece.

 For this reason, you should decompose the problem, characterizing it as a set of smaller(and

hopefully, more manageable) problems

EFFORT ESTIMATION

In softwaredevelopment, effort estimation is the process of predicting the most realistic amount

of effort (expressed in terms of person-hours or money) required to develop or

maintain software based on incomplete, uncertain and noisy input. Effort estimates may be used

as input to project plans, iteration plans, budgets, investment analyses, pricing processes and

bidding rounds.

BUILDING EFFORT ESTIMATION MODEL

 An estimation model can be viewed as a "function" that outputs the effortestimate, clearly this

estimation function will need inputs about the project,from which it can produce the estimate.

 The basic idea of having a model orprocedure for estimation is that it reduces the problem of

estimation to estimatingor determining the value of the "key parameters" that characterize the

project, based on which the effort can be estimated.

 One common approach therefore for estimating effort is to make it a function of project size, and

the equation of effort is considered as

EFFORT = a^SIZE

https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Estimation

2

Where a and b are constants [5], and project size is generally in KLOCor function points.

A Bottom-Up Estimation Approach

 In this approach, the major programs (or units or modules) in the software being built are first

determined. Each program unit is then classified as simple, medium, or complex based on certain

criteria. For each classification unit, an average effort for coding (and unit testing) is decided.

This standard coding effort can be based on past data.

 The procedure for estimation can be summarized as the following sequence of steps:

1. Identify modules in the system and classify them as simple, medium, or complex.

2. Determine the average coding effort for simple/medium/complex modules.

3. Get the total coding effort using the coding effort of different types of modules and the counts

for them.

4. Using the effort distribution for similar projects, estimate the effort for other tasks and the total

effort.

5. Refine the estimates based on project-specific factors. miler project, from some guidelines, or

some combination of these.

COCOMOModel(EmpiricalProcessModel)

 COCOMO is one of the most widely used software estimation models in the world.

 This model is developed in 1981 by Barry Boehm to give estimation of number of man-months it

will take to develop a software product.

 COCOMO predicts the efforts and schedule of software product based on size of software.

 COCOMO has three different models that reflect complexity

1. Basic Model

2. Intermediate Model

3. Detailed Model

 Similarly, there are three classes of software projects.

1. Organic mode in this mode, relatively simple, small software projects with a small team is

handled. Such team should have good application experience to less rigid requirements.

3

2. Semi-detached projects in this class intermediate project in which team with mixed experience

level are handled. Such project may have mix of rigid and less than rigid requirements.

3. Embedded projects in this class, project with tight hardware, software and operational constraints

are handled.

 Each Model in detail

1. Basic Model

The basic COCOMO model estimate the software development effort using only Lines of code

Various equations in this model are

E= abKLOCbbD = cbEdbE = abKLOCbbD = cbEbd

Where, E is the effort applied in person-months,

D is the development time in chronological months and

KLOC is the estimated number of delivered lines of code for the project

2. Intermediate Model

This is extension of COCOMO model.

This estimation model makes use of set of “Cost Driver Attributes” to compute the cost of

software.

I. Product attributes

a. required software reliability

b. size of application data base

c. complexity of the product

II. Hardware attributes

a. run-time performance constraints

b. memory constraints

4

c. volatility of the virtual machine environment

d. required turnaround time

III. Personnel attributes

a. analyst capability

b. software engineer capability

c. applications experience

d. virtual machine experience

e. programming language experience

IV. Project attributes

a. use of software tools

b. application of software engineering methods

c. required development schedule

Each of the 15 attributes is rated on a 6 point scale that ranges from "very low" to "extra high"

(in importance or value).

The intermediate COCOMO model takes the form

E=aiKLOCbi×EAFE=aiKLOCib×EAF

Where, E is the effort applied in person-months and

KLOC is the estimated number of delivered lines of code for the project

3. Detailed COCOMO Model

The detailed model uses the same equation for estimation as the intermediate Model.

But detailed model can estimate the effort (E), duration (D), and person (P) of each of

development phases, subsystem and models.

5

PROJECT SCHEDULE

 A project Schedule is at two levels - overall schedule and detailed schedule

 Overall schedule comprises of major milestones and final date

 Detailed schedule is the assignment of lowest level tasks to resources

OVERALL SCHEDULE

 Depends heavily on the effort estimate

 For an effort estimate, some flexibility exists depending on resources assigned

 Eg a 56 person-months project can be done in 8 months with 7 people, or 7 months with 8 people

 Stretching a schedule is easy; compressing is hard and expensive

 One method is to estimate schedule S (in months) as a function of effort in PMs

 Can determine the fn through analysis of past data; the function is non linear

 COCOMO: S = 2.5 E 3.8

 Often this schedule is checked and corrected for the specific project

 One checking method – square root check

DETERMINING OVERALL SCHEDULE FROM PAST DATA

6

DETERMINING MILESTONES

 With effort and overall schedule decided, avg project resources are fixed

 Manpower ramp-up in a project decides the milestones

 Manpower ramp-up in a project follows a Rayleigh curve - like a normal curve

 In reality manpower build-up is a step function

MANPOWER RAMP-UP

MILESTONES

 With manpower ramp-up and effort distribution, milestones can be decided

 Effort distribution and schedule distribution in phases are different

 Generally, the build has larger effort but not correspondingly large schedule

 COCOMO specifies overall scheduling. Design – 19%, programming – 62%, integration – 18%

An Example Schedule

7

DETAILED SCHEDULING

 To reach a milestone, many tasks have to be performed

 Lowest level tasks - those that can be done by a person (in less than 2-3 days)

 Scheduling - decide the tasks, assign them while preserving high-level schedule

 Is an iterative task - if cannot “fit” all tasks, must revisit high level schedule

 Detailed schedule not done completely in the start - it evolves

 Can use Microsoft Project for keeping it

 Detailed Schedule is the most live document for managing the project

 Any activity to be done must get reflected in the detailed schedule

An example task in detail schedule

 Each task has name, date, duration, resource etc assigned

 % done is for tracking (tools use it)

 The detailed schedule has to be consistent with milestones

 Tasks are sub-activities of milestone level activities, so effort should add up, total schedule

should be preserved

QUALITY PLANNING:

 Delivering high quality is a basic goal

 Quality can be defined in many ways

 Current industry standard - delivered defect density (e.g. #defects/KLOC)

8

 Defect - something that causes software to behave in an inconsistent manner

 Aim of a project - deliver software with low delivered defect density

DEFECT INJECTION AND REMOVAL

 Software development is labor intensive

 Defects are injected at any stage

 As quality goal is low delivered defect density, these defects have to be removed

 Done primarily by quality control (QC) activities of reviews and testing

APPROACHES TO QUALITY MANAGEMENT

 Ad hoc - some testing, some reviews done as and when needed

 Procedural - defined procedures are followed in a project

 Quantitative - defect data analysis done to manage the quality process

PROCEDURAL APPROACH

 A quality plan defines what QC tasks will be undertaken and when

 Main QC tasks - reviews and testing

 Guidelines and procedures for reviews and testing are provided

 During project execution, adherence to the plan and procedures ensured

QUANTITATIVE APPROACH

 Goes beyond asking “has the procedure been executed”

9

 Analyzes defect data to make judgments about quality

 Past data is very important

 Key parameters - defect injection and removal rates, defect removal efficiency (DRE)

QUALITY PLAN

 The quality plan drives the quality activities in the project

 Level of plan depends on models available

 Must define QC tasks that have to be performed in the project

 Can specify defect levels for each QC tasks (if models and data available)

SOFTWARE RISK MANAGEMENT:

Risk is an expectation of loss, a potential problem that may or may not occur in the future. It is

generally caused due to lack of information, control or time.A possibility of suffering from loss

in software development process is called a software risk. Loss can be anything, increase in

production cost, development of poor quality software, not being able to complete the project on

time. A software risk can be of two types : internal risks that are within the control of the project

manager and external risks that are beyond the control of project manager. Risk management is

carried out to:

Identify the risk

Reduce the impact of risk

Reduce the probability or likelihood of risk

Risk monitoring

A project manager has to deal with risks arising from three possible cases:

Known knowns are software risks that are actually facts known to the team as well as to the

entire project. For example not having enough number of developers can delay the project

delivery. Such risks are described and included in the Project Management Plan.

Known unknowns are risks that the project team is aware of but it is unknown that such risk

exists in the project or not. For example if the communication with the client is not of good level

then it is not possible to capture the requirement properly. This is a fact known to the project

team however whether the client has communicated all the information properly or not is

10

unknown to the project.

Unknown Unknowns are those kind of risks about which the organization has no idea. Such risks

are generally related to technology such as working with technologies or tools that you have no

idea about because your client wants you to work that way suddenly exposes you to absolutely

unknown risks.

Software risk management is all about risk quantification of risk. This includes:

Giving a precise description of risk event that can occur in the project

Defining risk probability that would explain what are the chances for that risk to occur

Defining How much loss a particular risk can cause

Defining the liability potential of risk

Risk Management comprises of following processes:

Software Risk Identification

Software Risk Analysis

Software Risk Planning

Software Risk Monitoring

These Processes are defined below.

SOFTWARE RISK IDENTIFICATION

In order to identify the risks that your project may be subjected to, it is important to first study

the problems faced by previous projects. Study the project plan properly and check for all the

possible areas that are vulnerable to some or the other type of risks. The best ways of analyzing a

project plan is by converting it to a flowchart and examine all essential areas. Any decision taken

related to technical, operational, political, legal, social, internal or external factors should be

evaluated properly. In this phase of Risk management you have to define processes that are

important for risk identification.

SOFTWARE RISK ANALYSIS

Software Risk analysis is a very important aspect of risk management. In this phase the risk is

identified and then categorized. After the categorization of risk, the level, likelihood (percentage)

and impact of the risk is analyzed. Likelihood is defined in percentage after examining what are

the chances of risk to occur due to various technical conditions. These technical conditions can

be:

11

Complexity of the technology

Technical knowledge possessed by the testing team

Conflicts within the team

Teams being distributed over a large geographical area

Usage of poor quality testing tools

With impact we mean the consequence of a risk in case it happens. It is important to know about

the impact because it is necessary to know how a business can get affected:

What will be the loss to the customer

How would the business suffer

Loss of reputation or harm to society

Monetary losses

Legal actions against the company

Cancellation of business license

Level of risk is identified with the help of:

QUALITATIVE RISK ANALYSIS: Here you define risk as:

High

Low

Medium

QUANTITATIVE RISK ANALYSIS: can be used for software risk analysis but is considered

inappropriate because risk level is defined in % which does not give a very clear picture.

SOFTWARE RISK PLANNING:

Software risk planning is all about:

Defining preventive measure that would lower down the likelihood or probability of various

risks.

Define measures that would reduce the impact in case a risk happens.

Constant monitoring of processes to identify risks as early as possible

SOFTWARE RISK MONITORING

Software risk monitoring is integrated into project activities and regular checks are conducted on

top risks. Software risk monitoring comprises of:

Tracking of risk plans for any major changes in actual plan, attribute, etc.

12

Preparation of status reports for project management.

Review risks and risks whose impact or likelihood has reached the lowest possible level should

be closed.

Regularly search for new risks

PROJECT MONITORING PLAN:

There are two considerations for monitoring a project. They are

1. Measurements

2. Project Execution & Monitoring

MEASUREMENTS:

For an effective management accurate estimation of various measures is a must. With correct

estimation managers can manage and control the project more efficiently and effectively.

Project estimation may involve the following:

 Software size estimation

Software size may be estimated either in terms of KLOC (Kilo Line of Code) or by calculating

number of function points in the software. Lines of code depend upon coding practices and

Function points vary according to the user or software requirement.

 Effort estimation

The managers estimate efforts in terms of personnel requirement and man-hour required to

produce the software. For effort estimation software size should be known. This can either be

derived by managers’ experience, organization’s historical data or software size can be converted

into efforts by using some standard formulae.

 Time estimation

Once size and efforts are estimated, the time required to produce the software can be estimated.

Efforts required is segregated into sub categories as per the requirement specifications and

interdependency of various components of software. Software tasks are divided into smaller

tasks, activities or events by Work Breakthrough Structure (WBS). The tasks are scheduled on

13

day-to-day basis or in calendar months.

The sum of time required to complete all tasks in hours or days is the total time invested to

complete the project.

 Cost estimation

This might be considered as the most difficult of all because it depends on more elements than

any of the previous ones. For estimating project cost, it is required to consider –

o Size of software

o Software quality

o Hardware

o Additional software or tools, licenses etc.

o Skilled personnel with task-specific skills

o Training and support

PROJECT EXECUTION & MONITORING:

In this phase, the tasks described in project plans are executed according to their

schedules.Execution needs monitoring in order to check whether everything is going according

to the plan. Monitoring is observing to check the probability of risk and taking measures to

address the risk or report the status of various tasks.

These measures include -

 Activity Monitoring - All activities scheduled within some task can be monitored on day-to-day

basis. When all activities in a task are completed, it is considered as complete.

 Status Reports - The reports contain status of activities and tasks completed within a given time

frame, generally a week. Status can be marked as finished, pending or work-in-progress etc.

 Milestones Checklist - Every project is divided into multiple phases where major tasks are

performed (milestones) based on the phases of SDLC. This milestone checklist is prepared once

every few weeks and reports the status of milestones.

14

A graphical method of capturing the basic progress of a project as compared to its plans is the

cost-schedule-milestone graph. The X-axis of this graph is time, where the months in the project

schedule are marked. The y-axis represents the cost, in dollars or PMs. Twocurves are drawn.

One curve is the planned cost and planned schedule, inwhich each important milestone of the

project is marked. This curve canbe completed after the project plan is made. The second curve

represents the actual cost and actual schedule, and the actual achievement of the milestones is

marked. Thus, for each milestone the point representing the time.when the milestone is actually

achieved and the actual cost of achieving itare marked. A cost-schedule-milestone graph for the

example is shown in

In the above graph,a hypothetical project whose cost is estimated to be $100K is considered .The

milestones in this project are PDR (preliminary design review), CDR (critical design review),

Module 1 completion,Module 2 completion, integration testing, and acceptance testing.The

planned budget is shown by a dotted fine. The actual expenditure is shown with a bold line. This

chart shows that only two milestones have beenachieved, PDR and CDR, and though the project

was within budget whenPDR was complete, it is now slightly over budget.

DESIGN

The design activity begins when the requirements document for the software tobe developed is

available and the architecture has been designed. During design we further refine the

architecture. The design of a system is essentially a blueprint or a plan for a solution for the

system.

15

The design process for software systems often has two levels.

1. At the first level the focus is on deciding which modules are needed for the system, the

specifications of these modules, and how the modules should be interconnected. This is what

may be called the module design or the high-level design.

2. In the second level, the internal design of the modules, or how the specifications of the module

can be satisfied, is decided.

A design methodology is a systematic approach to creating a design by applying of a set of

techniques and guidelines.

DESIGN CONCEPTS

Design is correct, if it will satisfy all therequirements and is consistent with architecture.Of the

correct designs, we want best design. We focus on modularity as the maincriteria (besides

correctness).

Modularity

Modular system is a system in which modules can be builtseparately and changes in one have

minimum impact on others. Modularity supports independence of models, enhances design

clarity, easesimplementation, reduces cost of testing, debugging andmaintenance.

Modularization

Modularization is a technique to divide a software system into multiple discrete and independent

modules, which are expected to be capable of carrying out task(s) independently. These modules

may work as basic constructs for the entire software. Designers tend to design modules such that

they can be executed and/or compiled separately and independently.

Modular design unintentionally follows the rules of ‘divide and conquer’ problem-solving

strategy this is because there are many other benefits attached with the modular design of a

software.

Advantage of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction can be brought in the program

 Components with high cohesion can be re-used again

16

 Concurrent execution can be made possible

 Desired from security aspect

COUPLING AND COHESION

When a software program is modularized, its tasks are divided into several modules based on

some characteristics. As we know, modules are set of instructions put together in order to

achieve some tasks. They are though, considered as single entity but may refer to each other to

work together. There are measures by which the quality of a design of modules and their

interaction among them can be measured. These measures are called coupling and cohesion.

Coupling:- Coupling is a measure that defines the level of inter-dependability among modules of

a program. It tells at what level the modules interfere and interact with each other. The lower the

coupling, the better the program.

There are five levels of coupling are:-

• Content coupling - When a module can directly access or modify or refer to the content of

another module, it is called content level coupling.

• Common coupling- When multiple modules have read and write access to some global data, it

is called common or global coupling.

17

• Control coupling- Two modules are called control-coupled if one of them decides the function

of the other module or changes its flow of execution.

• External Coupling: This type of coupling occurs when an external imposed data format and

communication protocol are shared by two modules. External Coupling is generally related to the

communication to external devices.

• Message Coupling: This type of coupling can be achieved by the state decentralization. It is the

loosest type of coupling, in which the component communication is performed through message

passing.

• Stamp coupling- When multiple modules share common data structure and work on different

part of it, it is called stamp coupling.

• Data coupling- Data coupling is when two modules interact with each other by means of

passing data (as parameter). If a module passes data structure as parameter, then the receiving

module should use all its components.

Factors affecting coupling:

The manifestation of coupling in OO systems is somewhat different as objects are semantically

richer than functions. In OO systems, three different types of coupling exist between modules

1. Interaction coupling

2. Component coupling

3. Inheritance coupling

18

Interaction coupling occurs due to methods of a class invoking methods ofother classes. In

many ways, this situation is similar to a function calling anotherfunction and hence this coupling

is similar to coupling between functionalmodules discussed above. Like with functions, the worst

form of coupling here isif methods directly access internal parts of other methods. Coupling is

lowestif methods communicate directly through parameters.

 Within this category,as discussed above, coupling is lower if only data is passed, but is higher

ifcontrol information is passed since the invoked method impacts the executionsequence in the

calling method.Also, coupling is higher if the amount of databeing passed is increased. Similarly,

ifan object is passed to a method when only some of its component objects are used within the

method, coupling increases unnecessarily.

 The least couplingsituation therefore is when communication is with parameters only, with

onlynecessary variables being passed, and these parameters only pass data.

Component coupling refers to the interaction between two classes where aclass has variables of

the other class. Three clear situations exist as to how thiscan happen.

 A class C can be component coupled with another class C1, if Chas an instance variable of type

C1, or C has a method whose parameter is oftype C1, or if C has a method which has a local

variable of type C1. Note thatwhen C is component coupled with C1, it has the potential of being

componentcoupled with all subclasses of C1 as at runtime an object of any subclass may

actually be used. It should be clear that whenever there is component coupling,there is likely to

be interaction coupling.

Component coupling is considered tobe weakest (i.e. most desired) if in a class C, the variables

of class C1 are eitherin the signatures of the methods of C, or are some attributes of C. If

interactionis through local variables, then this interaction is not visible from outside, and

therefore increases coupling.

Inheritance coupling is due to the inheritance relationship between classes.

Two classes are considered inheritance coupled if one class is a direct or indirectsubclass of the

other. If inheritance adds coupling, one can ask the questionwhy not do away with inheritance

altogether. The reason is that inheritancemay reduce the overall coupling in the system. Let us

consider two situations.If a class A is coupled with another class B, and if B is a hierarchy with

B1 andDesignB2 as two subclasses, then if a method m() is factored out of B1 and B2 and

put in the superclass B, the coupling drops as A is now only coupled with B,whereas earlier it

19

was coupled with both B1 and B2. Similarly, if B is a classhierarchy which supports

specialization-generalization relationship, then if newsubclasses are added to B, no changes need

to be made to a class A which callsmethods in B. That is, for changing B’s hierarchy, A need not

be disturbed. Without this hierarchy, changes in B would most likely result in changes in A

Within inheritance coupling there are some situations that are worse thanothers. The worst form

is when a subclass B1 modifies the signature of a methodin B (or deletes the method). This

situation can easily lead to a runtime error,besides violating the true spirit of the is-a relationship.

The least coupling scenario is when a subclass only adds instancevariables and methods but does

not modify any inherited ones.

Cohesion:-

Cohesion is a natural extension of the information hiding concept. A cohesive module performs a

single task within a software procedure, requiring little interaction with procedures being

performed in other parts of a program. Cohesion may be represented as a "spectrum." We always

strive for high cohesion, although the mid-range of the spectrum is often acceptable. The scale

for cohesion is nonlinear.

Types of cohesion:- 1. Coincidental cohesion 2.Logical cohesion 3.Temporal cohesion

4.Communicational cohesion 5. Sequential cohesion

Coincidental cohesion:-

This occurs when there is no relationship among elements of a module. They can occur if an

20

existing program modularized by chopping it into pieces and making differ piece of modules i.e.

it performs a set of tasks that are related to each other very loosely. The modules contain a

random collection of function.

Logical cohesion:-

A module having logical cohesion if there are some logical relationship between elements of a

modules i.e. elements of a module performs the operation.

Temporal cohesion:-

It is same as logical cohesion except that the element must be executed in same time. Set of

function responsible for initialization, startup, the shutdown of the same process. It is higher than

logical cohesion since all elements are executed together. This avoids the problem of passing the

flag.

Communicational cohesion:-

A module is said to have Communicational cohesion if all function of module refers to an update

the same data structure.

Sequential cohesion:-

A module is said to have sequential cohesion if element module from different parts of the

sequence. When the output from one element of the sequence is input to the next element of a

sequence. A sequence bounded module may contain several functions or part of different

functions.

Functional cohesion:-

It is the strongest cohesion in a functional bound module, all elements of the module are related

to performing a single function. By function we not mean simply mathematical function but also

these modules which have single goal function like computing square root and sort array are a

clear example of functionality cohesion modules.

21

Cohesion in object-oriented systems has three aspects

1. Method cohesion

2. Class cohesion

3. Inheritance cohesion

Method cohesion is the same as cohesion in functional modules. It focuses onwhy the different

code elements of a method are together within the method.

Class cohesion focuses on why different attributes and methods are together

in this class. The goal is to have a class that implements a single concept orabstraction with all

elements contributing toward supporting this concept.

Inheritance cohesion focuses on the reason why classes are together in ahierarchy

Open-closed Principle

Besides cohesion and coupling, open closed principlealso helps in achieving modularity.

Principle: A module should be open for extension butclosed for modification.

Behavior can be extended to accommodate new requirements,but existing code is not modified

i.e., allows addition of code, but not modification of existingcode.It minimizes risk of having

existing functionality stop working dueto changes.

In ObjectOriented this principle is satisfied by usinginheritance and polymorphism.

Inheritance allows creating a new class toextend behavior without changing the original

class.This can be used to support the open-closedprinciple.

Consider example of a client object whichinteracts with a printer object for printing

Client directly calls methods on Printer1.

If another printer is to be allowed.

A new class Printer2 will be created.

But the client will have to be changed if it wants touse Printer 2.

Alternative approach:

Have Printer1 a subclass of a general Printer.

22

For modification, add another subclass Printer 2.

Client does not need to be changed.

FUNCTION ORIENTED DESIGN

In function-oriented design, the system is comprised of many smaller sub-systems known as

functions. These functions are capable of performing significant task in the system. The system

is considered as top view of all functions.

Function oriented design inherits some properties of structured design where divide and conquer

methodology is used.

This design mechanism divides the whole system into smaller functions, which provides means

of abstraction by concealing the information and their operation.. These functional modules can

share information among themselves by means of information passing and using information

available globally.

Another characteristic of functions is that when a program calls a function, the function changes

the state of the program, which sometimes is not acceptable by other modules. Function oriented

design works well where the system state does not matter and program/functions work on input

rather than on a state.

Design Process

23

 The whole system is seen as how data flows in the system by means of data flow diagram.

 DFD depicts how functions changes data and state of entire system.

 The entire system is logically broken down into smaller units known as functions on the basis of

their operation in the system.

 Each function is then described at large.

OBJECT ORIENTED DESIGN

Object oriented design works around the entities and their characteristics instead of functions

involved in the software system. This design strategies focuses on entities and its characteristics.

The whole concept of software solution revolves around the engaged entities.

Let us see the important concepts of Object Oriented Design:

 Objects - All entities involved in the solution design are known as objects. For example, person,

banks, company and customers are treated as objects. Every entity has some attributes associated

to it and has some methods to perform on the attributes.

 Classes - A class is a generalized description of an object. An object is an instance of a class.

Class defines all the attributes, which an object can have and methods, which defines the

functionality of the object.

In the solution design, attributes are stored as variables and functionalities are defined by means

of methods or procedures.

 Encapsulation - In OOD, the attributes (data variables) and methods (operation on the data) are

bundled together is called encapsulation. Encapsulation not only bundles important information

of an object together, but also restricts access of the data and methods from the outside world.

This is called information hiding.

 Inheritance - OOD allows similar classes to stack up in hierarchical manner where the lower or

sub-classes can import, implement and re-use allowed variables and methods from their

immediate super classes. This property of OOD is known as inheritance. This makes it easier to

define specific class and to create generalized classes from specific ones.

24

 Polymorphism - OOD languages provide a mechanism where methods performing similar tasks

but vary in arguments, can be assigned same name. This is called polymorphism, which allows a

single interface performing tasks for different types. Depending upon how the function is

invoked, respective portion of the code gets executed.

DETAILED DESIGN

1. The process of refining and expanding the preliminary design phase of a system or component

to the extent that the design is sufficiently complete to be implemented .

 2. The result of the process in 1.

 To keep terminology consistent, we’ll use the following definition:

 1. The process of refining and expanding the software architecture of a system or component to

the extent that the design is sufficiently complete to be implemented .

2. The result of the process in 1.

 During Detailed Design designers go deep into each component to define its internal structure

and behavioral capabilities, and the resulting design leads to natural and efficient construction of

software.

WHAT IS DETAILED DESIGN?

 “Architecture is design, but not all design is architecture. That is, many design decisions are left

unbound by the architecture and are happily left to the discretion and good judgment of

downstream designers and implementers. The architecture establishes constraints on downstream

activities, and those activities must produce artifacts—finer-grained design and code—that are

compliant with the architecture, but architecture does not define an implementation.”

 Detailed design is closely related to architecture and construction; therefore successful designers

(during detailed design) are required to have or acquire full understanding of the system’s

requirements and architecture. ü They must also be proficient in particular design strategies (e.g.,

objectoriented), programming languages, and methods and processes for software quality

control. ü Just as architecture provides the bridge between requirements and design, detailed

design provides the bridge between design and code.

There are many aspects to consider in the design of a piece of software. The importance of each

25

should reflect the goals the software is trying to achieve. Some of these aspects are:

 Compatibility - The software is able to operate with other products that are designed for

interoperability with another product. For example, a piece of software may be backward-

compatible with an older version of itself.

 Extensibility - New capabilities can be added to the software without major changes to the

underlying architecture.

 Fault-tolerance - The software is resistant to and able to recover from component failure.

 Maintainability - The software can be restored to a specified condition within a specified period

of time. For example, antivirus software may include the ability to periodically receive virus

definition updates in order to maintain the software's effectiveness.

 Mod modification with slight or no modification.

 Robustness - The software is able to operate under stress or tolerate unpredictable or invalid

input. For example, it can be designed with a resilience to low memory conditions.

 Security - The software is able to withstand hostile acts and influences.

 Usability - The software user interface must be usable for its target user/audience. Default values

for the parameters must be chosen so that they are a good choice for the majority of the users.

KEY TASKS IN DETAILED DESIGN

 In practice, it can be argued that the detailed design phase is where most of the problemsolving

activities occur. Consider the case in which a formal process is followed, so that the

requirements is followed by architecture and detailed design. ü In many practical applications,

the architectural design activity defers complex problem solving to detailed design, mainly

through abstraction. ü In some cases, even specifying requirements is deferred to detailed design!

 For these reasons, detailed design serves as the gatekeeper for ensuring that the system’s

specification and design are sufficiently complete before construction begins. ü This can be

especially tough for large-scale systems built from scratch without experience with the

development of similar systems.

 The major tasks identified for carrying out the detailed design activity include:

1. Understanding the architecture and requirements

2. Creating detailed designs

3. Evaluating detailed designs

26

 4. Documenting software design

5. Monitoring and controlling implementation.

SOFTWARE VERIFICATION AND VALIDATION

Verification and validation are not the same thing, although they are often

confused. Boehm succinctly expressed the difference as

 Validation: Are we building the right product?

 Verification: Are we building the product right?

Building the right product implies creating a Requirements Specification that contains the needs

and goals of the stakeholders of the software product. If such artifact is incomplete or wrong, the

developers will not be able to build the product the stakeholders want. This is a form of "artifact

or specification validation".

Building the product right implies the use of the Requirements Specification as input for the next

phase of the development process, the design process, the output of which is the Design

Specification. Then, it also implies the use of the Design Specification to feed the construction

process. Every time the output of a process correctly implements its input specification, the

software product is one step closer to final verification. If the output of a process is incorrect, the

developers are not building the product the stakeholders want correctly. This kind of verification

is called "artifact or specification verification".

Software verification

It would imply to verify if the specifications are met by running the software but this is not

possible (e. g., how can anyone know if the architecture/design/etc. are correctly implemented by

running the software?). Only by reviewing its associated artifacts, someone can conclude if the

specifications are met.

Artifact or specification verification

The output of each software development process stage can also be subject to verification when

checked against its input specification (see the definition by CMMI below).

Examples of artifact verification:

https://en.wikipedia.org/wiki/Barry_Boehm

27

 Of the design specification against the requirement specification: Do the architectural design,

detailed design and database logical model specifications correctly implement the functional and

non-functional requirement specifications?

 Of the construction artifacts against the design specification: Do the source code, user interfaces

and database physical model correctly implement the design specification?

VERIFICATION VS VALIDATION

According to the Capability Maturity Model

 Software Validation: The process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements.

 Software Verification: The process of evaluating software to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase.

Validation during the software development process can be seen as a form of User Requirements

Specification validation; and, that at the end of the development process is equivalent to Internal

and/or External Software validation. Verification, from CMMI's point of view, is evidently of the

artifact kind.

In other words, software verification ensures that the output of each phase of the software

development process effectively carry out what its corresponding input artifact specifies

(requirement -> design -> software product), while software validation ensures that the software

product meets the needs of all the stakeholders (therefore, the requirement specification was

correctly and accurately expressed in the first place). Software verification ensures that "you

built it right" and confirms that the product, as provided, fulfills the plans of the developers.

Software validation ensures that "you built the right thing" and confirms that the product, as

provided, fulfills the intended use and goals of the stakeholders.

This article has used the strict or narrow definition of verification.

From testing perspective:

 Fault – wrong or missing function in the code.

 Failure – the manifestation of a fault during execution. The software was not effective. It does

not do "what" it is supposed to do.

https://en.wikipedia.org/wiki/Capability_Maturity_Model
https://en.wikipedia.org/wiki/Software_verification#Narrow_scope

28

 Malfunction – according to its specification the system does not meet its specified functionality.

The software was not efficient (it took too many resources such as CPU cycles, it used too much

memory, performed too many I/O operations, etc.), it was not usable, it was not reliable, etc. It

does not do something "how" it is supposed to do it.

SOFTWARE METRICS

A software metric is a measure of software characteristics which are quantifiable or countable.

Software metrics are important for many reasons, including measuring software

performance,planning work items, measuring productivity, and many other uses.

Within the software development process, there are many metrics that are all related to each

other. Software metrics are related to the four functions of management: Planning, Organization,

Control, or Improvement.

BENEFITS OF SOFTWARE METRICS

The goal of tracking and analyzing software metrics is to determine the quality of the current

product or process, improve that quality and predict the quality once the software development

project is complete. On a more granular level, software development managers are trying to:

 Increase return on investment (ROI)

 Identify areas of improvement

 Manage workloads

 Reduce overtime

 Reduce costs

These goals can be achieved by providing information and clarity throughout the organization

about complex software development projects. Metrics are an important component of quality

assurance, management, debugging, performance, and estimating costs, and they’re valuable for

both developers and development team leaders:

 Managers can use software metrics to identify, prioritize, track and communicate any issues to

foster better team productivity. This enables effective management and allows assessment and

https://stackify.com/application-performance-metrics/
https://stackify.com/application-performance-metrics/
http://www.aiuniv.edu/blog/january-2016/functions-of-management
http://www.pmvista.com/benefits-of-software-metrics-measurements/
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/boughtonalexandra.pdf
https://stackify.com/measuring-software-development-productivity/

29

prioritization of problems within software development projects. The sooner managers can detect

software problems, the easier and less-expensive the troubleshooting process.

 Software development teams can use software metrics to communicate the status of software

development projects, pinpoint and address issues, and monitor, improve on, and better manage

their workflow.

Software metrics offer an assessment of the impact of decisions made during software

development projects. This helps managers assess and prioritize objectives and performance

goals.

Although many software metrics have been proposed over a period of time, ideal software metric

is the one which is easy to understand, effective, and efficient. In order to develop ideal metrics,

software metrics should be validated and characterized effectively. For this, it is important

todevelop metrics using some specific guidelines, which are listed below.

 Simple and computable: Derivation of software metrics should be easy to learn and should

involve average amount of time and effort.

 Consistent and objective: Unambiguous results should be delivered by software metrics.

 Consistent in the use of units and dimensions: Mathematical computation of the metrics

should involve use of dimensions and units in a consistent manner.

 Programming language independent: Metrics should be developed on the basis of the analysis

model, design model, or program's structure.

 High quality: Effective software metrics should lead to a high-quality software product.

 Easy to calibrate: Metrics should be easy to adapt according to project requirements.

 Easy to obtain: Metrics should be developed at a reasonable cost.

 Validation: Metrics should be validated before being used for making any decisions.

 Robust: Metrics should be relatively insensitive to small changes in process, project, or product.

 Value: Value of metrics should increase or decrease with the value of the software

characteristics they represent. For this, the value of metrics should be within a meaningful range.

For example, metrics can be in a range of 0 to 5.

30

